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Abstract

The deformation of a single wall carbon nanotube (SWCNT) interacting with a curved bundle of nanotubes is
analyzed. The SWCNT is modeled as a straight elastic inextensible beam based on small deformation. The bundle of
nanotubes is assumed rigid and the interaction is due to the van der Waals forces. An analytical solution is obtained
using a bilinear approximation to the van der Waals forces. The analytical results are in good agreement with the results
of two numerical methods. The results indicate that the SWCNT remains near the curved bundle provided that its
curvature is below a critical value. For curvatures above this critical value the SWCNT breaks contact with the curved
bundle and nearly returns to its straight position. A parameter study shows that the critical curvature depends on the
stiffness of the SWCNT and the absolute minimum energy associated with the van der Waals forces but it is inde-
pendent of the SWCNT’s length in general. An analytical estimate of the critical curvature is developed. The results of
this study may be applicable to composites of nanotubes where separation phenomena are suspected to occur.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Since the discovery (Iijima, 1991) of carbon nanotubes, they have been extensively investigated due to
their unique mechanical and electrical properties. Numerous studies have shown that carbon nanotubes
exhibit superior mechanical and electrical properties as compared to any other known materials and hold
substantial promise as super strong fibers for composite. Recent studies have shown the use of nanotubes as
actuator (Baughman et al., 1999), sensor (Collins et al., 2000), nanotweezers (Akita et al., 2001) and
nanoswitch (Dequesnes et al., 2002). Studies have shown that it is very difficult to disperse carbon nano-
tubes evenly in a matrix composite. Generally nanotubes form clusters and are found in bundles in
composites.
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Nomenclature

EI the bending stiffness of nanobeam

»(x) the deformation of the nanobeam in fixed coordinate

r(x) the relative deformation, defined by the distance between the center of the nanobeam in the

deformed position and the equilibrium position where the van der Waals force is zero
F(r)  van der Waals forces between the nanobeam and the substrate

Uy the minimum energy in the Lennard-Jones energy potential

Urin(r) the approximate van der Waals energy

7 the distance between the bottom of the nanobeam and top of the substrate when van der
Waals force is zero

o the equilibrium distance between the nanobeam and the substrate where the van der Waals
force is zero (ry = rs + d)

d the diameter of the nanobeam

ky the tangent stiffness of the van der Waals forcing function where the van der Waals force is
Zero

ks the stiffness of the second linear segment in bilinear model

by the interception of the second linear segment in bilinear model

My the critical curvature of the substrate for the jump phenomenon to occur in the nanobeam

m* the critical curvature of the substrate for the jump phenomenon to occur in the nanobeam,

when the van der Waals forcing function is replaced by linear approximation
L half length of the nanobeam

Electronic transport through carbon nanotubes is generally discussed in terms of the idealized geometry
of free nanotubes unperturbed by interaction with the matrix. But the carbon nanotubes interact with
surrounding material through van der Waals forces which are likely responsible for irregularities in the
electronic transport properties of adsorbed nanotubes (Hertel et al., 1998; Peng and Cho, 2000). Normally
the molecular dynamics (MD) method is applied to simulate the deformation of nanotubes influenced by
van der Waals forces. But the MD method needs to consider all the atoms forming the nanotubes. Also, the
time step required for a stable integration is very small; this leads to extremely slow convergence for larger
systems. Therefore a continuous elastic beam model is adopted in this paper to model and study the
behavior of a SWCNT.

The problem considered in this study is the nonlinear interaction and resulting relative deformation
between a SWCNT and a substrate consisting of a bundle of SWCNTSs with only van der Waals forces
interacting between them. Since a bundle of SWCNTs is much stiffer than a SWCNT, it is assumed that the
substrate of SWCNTs is rigid. Fig. 1(a) shows the SWCNT near the rigid substrate (model 1) and Fig. 1(b)
shows the SWCNT separated from the substrate (model 2). The transfer from model 1 to model 2, called
“jump phenomenon”, occurs at a critical curvature (Yakobson and Couchman, 2003).

The main objective of this study is to understand the jump phenomenon in detail. Analysis is carried out
to determine the critical curvature and the corresponding deformed configuration of the nanotube. Also the
influence of the length, the diameter, and the bending stiffness of the nanotube, as well as the van der Waals
forcing function, on the critical curvature for jump phenomenon is explored in this study. An analytical
method using bilinear approximation of the van der Waals forces is developed. Also the finite element
method and shooting method with accurate van der Waals forces are used to study the relative deformation
of the nanotube. Good agreement is found in the results of the three methods.
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Nanotube

Fixed Substrate Fixed Substrate

(a) (b)

Fig. 1. The deformation of nanotube: (a) Substrate curvature less than the critical curvature; (b) substrate curvature greater than the
critical curvature.

2. Beam model

The nanotube is idealized as a straight elastic inextensible beam that in the reference position has the
same curvature as that of the fixed substrate and has a uniform offset »y = r, + d from the substrate as
shown in Fig. 2, which is the equilibrium position for this nanobeam where zero van der Waals forces act, d
is the diameter of the nanobeam and r, is the distance between inner surfaces of two nanotubes shown in
Fig. 2. When the nanobeam deforms, there are only van der Waals forces interacting between them. The
van der Waals forcing and energy functions are shown in Fig. 3.

Since the nanobeam as well as the substrate is symmetric about y-axis, only half of the nanobeam is
analyzed with slope of the beam and the shear force equal to zero at the origin point or apex and with the
moment and the shear force equal to zero at free ends as shown in Fig. 2. The analysis is based on small
deformation theory. The equilibrium equation of the nanobeam is:

d*y(x
EI (i}x(“ ) +F(r(x))=0
with boundary condition (b.c.) (1)

y0) =0, y¥(0)=0
yA(L)=0, y(L)=0

where y(x) is the deformation of the nanobeam, y is the ith derivative of y with respect to x and F(r(x)) is
the van der Waals forces between substrate and the nanobeam. E7 is the bending stiffness of the nanobeam.

Nanobeam

Substrate with Fixed
Parabolic Curvature

Fig. 2. Initial condition of the nanobeam model.
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Fig. 3. Van der Waals forcing and energy function.

r(x) + 1o is the relative distance between the nanobeam and the substrate. The curvature of the substrate is
parabolic with Y(x) = mx?/2, where m is the curvature of the substrate. Rewriting Eq. (1) with
y(x) = mx?/2 4+ r(x) + ry:

d*r(x)
dx?
with b.c. (2)

rM0)=0, r90)=0
rAL)=—m, rIL)=0

EI

+F(r(x)) =0

The van der Waals force per unit length is expressed as (Israelachvili, 1992):

5
341 341
F)=17810y | = | ——or—— |+ [ oo —— 3
) ’ (3.13%%28) <3.13%’+0.28> G)

where U is the minimum energy in the Lennard-Jones energy potential as shown in Fig. 3. r, is the distance
between the surfaces of nanobeam and substrate when van der Waals force is zero. d is the diameter of the
nanobeam.

2.1. Analytical solution

2.1.1. Bilinear approximation

Since the van der Waals forcing function is highly nonlinear, it is very difficult to get an exact analytical
solution for this problem. Hence the bilinear approximation defined in Eq. (4) is used, instead of the
nonlinear van der Waals forcing function, to obtain an analytical solution, i.e.,
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ki for0<r<n
F(I") = —kyr+b, forr<r<m (4)
0 for r <r < oo

where k; is the tangent value of the van der Waals forcing function in Eq. (3) at the point where van der
Waals force is zero. Here 7 is calculated by dividing the maximum attraction force in Eq. (3) by 4. Also, &,
and b, are obtained by making the area enclosed by the attractive part of the bilinear forcing function with
the x axis the same as that of original van der Waals forcing function. Substituting Eq. (4) into Eq. (2) and
solving we obtain:

r(x) = €[4 cos(Ax) + Ay sin(A1x)] + e M¥[43 cos(A1x) + Ay sin(Zyx)]  for x < x| (5)

r(x) = By cos(Aax) + By sin(Ayx) + Bs cosh(/,x) + Bg sinh(A,x) +% for x; <x <x, (6)
2

where ) = {/% and /, = {‘/% There are a total of 10 unknowns in Egs. (5) and (6). Boundary conditions
provide four equations. Continuity conditions at x = x; provide four equations. The remaining equations
are obtained from constraint conditions: » = r; at x = x; and » = r, at x = x,. Thus there are ten unknown
variables and ten equations. Also sine and cosine functions make the problem nonlinear. One way to solve
is to search x; and x, along the length of the nanobeam. It is solved by standard iterative method by first

assuming x; and x; to be known.

2.1.2. Linear approximation

In order to get an analytical expression for the critical curvature for jump phenomenon to occur, an even
simpler linear approximation expression is introduced to replace the original van der Waals forcing
function, namely:

_Jhkr forr<n
F(r) = {0 for r > r ()
where k; and | are the same as defined in Eq. (4). Substituting Eq. (7) into Eq. (2):
d4
EI d:c(f) + kir(x) =0 for 0 < x < x
r(x)) =r (8)

AV0)=0, r¥0)=0
M(L)=—-mEI, Q(L) =0 for small m

Normally nanotubes have very high aspect ratios (length-to-diameter ratio). The solution for nanobeams
with a linear approximation of van der Waals force is derived based on semi-infinite beam on elastic

foundation with a concentrated moment M (L) = —mEI on the right hand side of the beam.
r(x) = —%e”‘“’”[cos(i] (L — x)) — sin(4; (L — x))] for small m 9)
A

where 4; = /4L. The value of x where r(x) = 0 can be calculated by cos(4;(L —x)) — sin(4(L —x)) = 0,

that is, 4, (L —x) =%,3% etc. (L = oLy = 457“1 , which is independent of m. Since r(x) is small between 0
and L — L,, the corresponding reaction due to elastic support is neglected, provided L/L, > 2. When (L) is

equal to r; (m will reach m*), the critical curvature under the linear approximation can be obtained from
Eq. (9):
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k1 rl
f_ 10
m i (10)
From Eq. (10) it can also be observed that m* does not depend on the length of the nanobeam if the length
of beam is long enough, such as L/L, > 2. It is observed that m* is proportional to the square root of k77,
which is twice the area enclosed by the attraction forces of the linear function has shown in Eq. (7). This
term has dimensions of energy, which corresponds to the absolute minimum energy in the energy function

defined in Eq. (11).
2 kit
ULin(r):{le_% ren (11)
0 r>n

It is assumed that the energy is zero when r approaches infinity. From the analysis in this section it can
be seen that the critical curvature is a function of the absolute minimum energy of the van der Waals
forcing function and the stiffness of the beam.

2.2. Finite element method (FEM )

FEM is used to calculate the deformations of the nanobeam and the results are compared with the
analytical results. Expressing Eq. (2) in Galerkin weak form:

/, (Elddtgx) s )+w<x>F<r<x>>)dx: iy 240 (12)

x=L

where w(x) is admissible test function. The Newton-Raphson method is used to solve this problem where
the van der Waals forcing function is expressed as:

F(r) = F(7y) + diF(?o)Ar + O(AF) (13)

Setting w = ZAE” Cyby, r ZBE”(dB + Adg)¢py and Ar =3, Adpey, where ¢ is shape function, Adj is
the unknown variable using which djp is computed, 7, is the set of all unknown degrees of freedom at nodes
in the finite element mesh and # is total number of nodes multiplied by the degrees of freedom at each node.
Substituting Eq. (13) into Eq. (12) and using Newton—Raphson method:

Sals ([ athtas [ 050 )aa

A€ng Ben x=0
dw(x) Y ¢ / vy (Fo)dx + ( / g $0a dx) (14)
= - 4 0)
dx x=L Aen, x=0 4 Ben, dx2 dxz
Defining
d’¢, ¢’y .
Ky = EI o d dx, K, ¢A dx, F;= qSA Fo)dx
and rewriting Eq. (14):
\ dw(x)
ZCA Z(KAB +Kp)Adp| = o ZCA ZKABdB+E4 (15)
Aéen, Bey x=L  den, Bey
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As there are four unknown variables for each element, minimum order of power series shape function for
one element should be 3. Hence Hermite interpolation polynomials are used:

Px) =1-32 425, ¢S(x) = Ls(s — 1)°
P5(x) =5°(3—2s), P5(x) = s> (s —1)

where /¢ is the length of one element. s =
element.

Since the forcing function in Eq. (15) is highly nonlinear, the Newton—-Raphson method may have
convergence difficulties if the initial guess dp is far away from the solution; hence an incremental load
method is used. First the substrate is assumed to be straight with zero curvature and initial solutions for the
beam are obtained. The curvature of the substrate, m, is increased and the solution in the previous step is
used as an initial guess for this step and the convergent solution for this step is computed. Then m is in-
creased and the above steps are repeated till required m is reached.

(16)

here x; and x, are the left and right coordinates of the

X—Xx1|
x—x1’

2.3. Shooting method

This problem is solved as a two point boundary value problem using the numerical shooting method.
Here the unknown deflection y(0) and the curvature y*)(0) are assumed at the start. After reaching the free
end it is checked for zero moment as well as zero shear at the free end. Since the nanobeam is in equi-
librium, the summation of forces along the length of the nanobeam must be zero. This additional criterion
needs to be satisfied. If all these conditions are not satisfied then a new initial guess is assumed and the
procedure is repeated. These conditions can be written in a vector format as

Y (x=1)
F={ ) Ox=L) §=0 (17)
Yo f(r(x)

The Newton-Raphson method provides a systematic way of carrying out iterations. Iterations are carried
out till the discrepancy vector F =0 or is within tolerance limit. For the convergence of the shooting
method it is necessary that the initial guess is close enough to the actual solution. Hence to start the
shooting method the initial guess for the unknown boundary conditions is obtained from the analytical
results.

3. Results and discussions

The stiffness of the nanobeam is calculated by using EI = nCd® (C = 2152.8 eV/nm? is the in-plane
stiffness, based on ab initio calculations (Kudin et al., 2001)), where d is the diameter of the nanobeam. In
the following discussion, »(x) is termed as relative deformation.

Deformations of the nanobeam, y(x), for different curvatures of the substrate computed using FEM,
analytical method and shooting method, are shown in Fig. 4(a). Also, van der Waals forces for different
curvatures of the substrate are compared in Fig. 4(b). Since solution by FEM and shooting method
essentially agree it is hard to distinguish the two solutions from Fig. 4. From Figs. 4(a) and (b) it can be
observed that FEM results as well as shooting method results are in good agreement with the analytical
solution using bilinear approximation. This validates the results by FEM solution. Henceforth, the FEM
solution is used. For L = 20 nm and d = 0.40 nm nanotube, when the curvature of the substrate changes
from —0.06 to —0.07 nm~!, the relative deformations of the nanobeam suddenly change from small
deformation to significant deformation as shown in Fig. 4(a), which is referred as jump phenomenon
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Fig. 4. Bilinear approximation, FEM, and shooting method solutions for nanobeam with 2L = 20 nm and 4 = 0.40 nm and different
substrate curvatures before and after the jump: (a) deformation; (b) van der Waals forces.

herein. Fig. 4(a) shows the change in deformation of the nanobeam as the curvature of the substrate
changes from —0.03 to —0.1 nm~'. Up to m = —0.06 nm~! the curvatures of the substrate and the beam are
nearly the same with small relative deformation; the corresponding van der Waals forces are shown in Fig.
4(b). However, when the curvature changes to —0.07 nm~' the relative deformation increases significantly
and the curvature of the beam decreases; the corresponding van dan Waals forces distribution is shown in
Fig. 4(b). Hence the critical curvature is —0.06 nm~! at which the jump phenomenon occurs for this case.

Figs. 5 and 6 show deformations of nanobeams with the same diameter but different lengths. In Fig. 5
the change of curvature of the substrate from —0.01 to —0.012 nm~' produces the jump phenomenon. From
Fig. 6(a) it can be seen that the deformed nanobeam has the same curvature as the substrate before the
critical curvature of —0.01 nm~"! for this case. Beyond the critical curvature of the substrate, the nanobeam
deforms significantly and the curvature of the beam reduces. In Fig. 6(a) the deformation of the substrate
and the curvature of the substrate are apart by ry, which is so small compared to the deformation of the
nanobeam that the nanobeam seems to be coincident with the substrate.

Fig. 7 shows further details of the behavior of nanobeam shown in Figs. 5 and 6. From Fig. 7(d), it can
be observed that the van der Waals forces shift from the right side of the nanobeam to the left side of the
nanobeam when m changes from —0.01 to —0.0106 nm~'. During this shift, the distribution of the van der
Waals forces nearly remains unchanged, the relative deformation of the nanobeam increases significantly
and the curvature of the beam reduces, as shown in Fig. 7(c). When m reaches —0.0108 nm~', the distri-
bution of the van der Waals forces changes and the curvature of the nanobeam becomes very small. From
the results in Fig. 7 it is evident that the critical curvature, m, for nanobeam with the same diameter is
—0.01 nm™! regardless of their lengths.

Next, the effect of diameter is evaluated holding length constant (2L = 200 nm). Based on a series of
simulations using FEM, for nanobeams with different diameters, but with same length, and different
absolute minimum energy U, (see Fig. 3), the computed m,, in the nonlinear case is shown in Table 1. It
should be noted that m* in Eq. (10) is calculated using linear approximation of the van der Waals forcing
function; whereas, the exact nonlinear van der Waals forcing function as defined in Eq. (3) is used to
estimate m,, in Table 1. From Table 1, it can be seen that the absolute value of m,, decreases as the diameter
of the nanobeam increases. For nanobeams with the same diameter, the absolute value of m,, increases with
the increase in the absolute minimum energy U.
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Fig. 5. The deformation of the nanobeam for 2L = 40 nm and d = 1.40 nm (a) before jump, (b) after jump.
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Next, an attempt is made to establish an analytical expression for computation of the critical curvature
in the nonlinear case. For linear approximation of van der Waals forcing function, it is shown that m* is

2|UL,

proportional to o

) (see Egs. (10) and (11)). Using a similar approach to establish m,, in nonlinear
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Fig. 7. FEM solutions for the nanobeam with different length and the beam diameter d = 1.40 nm: (a) deformation for 2L = 40 nm; (b)
van der Waals forces for 2L = 40 nm; (c) deformation for 2L = 200 nm; (d) van der Waals forces for 2L = 200 nm.

Table 1

me (nm~") for different diameters d and absolute minimum energy Uy
d (nm) U, (eV/nm)

0.9516 1.9032 2.8548 3.8046

1.4 —0.0100 —0.0141 —-0.0174 —-0.0202
2.1 —-0.0054 —-0.0078 —0.0094 -0.0101
2.8 —0.0036 —0.0050 —0.0062 —-0.0070
3.5 —-0.0024 —-0.0036 —0.0042 —-0.0050

case using FEM solutions the relation between m, with

% is evaluated in Fig. 8—where U is absolute

minimum energy as defined in Fig. 3. The results of FEM simulation shown in Table 1 are used to generate
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Fig. 8. It is observed that there exists a linear relationship between m,, and % with a slope of —1.414.
Hence, the equation for m can be written as:

Moy = 71.414,/ﬂ (18)
EI

Eq. (18) is valid only for the nanobeams having a large aspect ratio. It is important to mention that Eq. (18)
is not a general equation for different types of substrate curvatures. It is only valid for the parabolic
curvature of the substrate. Also we have not considered large deformation effects; hence the analysis results
are applicable for —2 < mL < 0.

Although analysis above is specifically for a single tube-tube contact, it can be generalized for the case of
tube-duplet or tube-triplet contacts which are likely to take place at the tube-bundle interface. The main
modification is in the potential energy of interaction as discussed elsewhere (Yakobson and Couchman,
2003, Yakobson and Couchman, 2004), with the doubled or tripled depth U, and somewhat extended range
(see Fig. 3 in Yakobson and Couchman (2004)).

4. Conclusions

Analytical, finite element and shooting methods have been used to solve the deformation of a nanotube
subjected to nonlinear van der Waals forces. All three methods give consistent results. As the critical
curvature of the substrate is reached, the relative deformation of the beam increases significantly and the
curvature of the beam decreases significantly. The resulting jump phenomenon is a characteristic of the
interactions of the nanobeam and the van der Waals forcing function. Considering only parabolic curva-
tures of the substrate for shallow nanotube, it is shown that the critical curvature depends on the bending
stiffness of the nanobeam as well as the absolute minimum energy U, but does not depend on the length of
the nanobeam when the aspect ratio is large. It is shown that in limited cases the critical curvature can be
estimated. Deformations of nanotubes are quite different before and after jump phenomenon and could be
the reason for the irregularities in the electronic transportation properties of the nanotube observed as the
mechanical deformations such as stretching, bending, twisting or flattening occur in carbon nanotube
bundles. The results of this study may be applicable to composites of nanotubes where separation
phenomenon is suspected to occur.
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